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This paper is concerned with the study of the problem of a field of 

steady-state vibrations excited in an elastic half-space by means of 

a rigid circular piston with an infinite rigid and smooth collar. 

Formulas for the active and reactive resistance of the connection 

between the field of wave propagation and the piston are obtained in 

terms of tabulated functions. Results of the analysis are presented 
for the case of driving a piston into an elastic Poisson medium. 

Let us study an elastic half-space z > 0. A circular piston of radius 

c is oscillating harmonically according to the law dz/dt = u exp(iot) 
in the opening of a rigid collar at the surface of the half-space. Contact 

of the piston with the elastic mediun is assured during the entire cycle 

of the oscillation by some constant load, such that the piston executes 
small oscillations about the position of equilibrium. J3ecause of the 

principle of superposition of states of stress in the linear theory of 
elasticity the static field and the field of steady-state oscillations 

are independent. 

‘Ihe analysis of the latter reduces to the solution of the dynamic 
equations of the theory of elasticity with the condition that the normal 

displacements at the points under the rigid piston are equal to z = 

(u/i01 exptiot), where u is the amplitude of the velocity of the piston. 
At points under the rigid collar the normal displacements are equal to 
zero. In calculations where the dimensions are large, the collar can be 
assumed to be infinite. ‘The surface of the piston and the collar will be 
also assumed to be sufficiently smooth, such that the shear stresses that 

might arise on the surface of the medium can be neglected. 

The mathematical problem of the analysis of the wave field, which de- 
pends on time as exptiot), reduces to finding bounded solutions of the 
equations on the amplitudes of the scalar displacement potential 4 and 
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the angular component of the vector displacement potential $. There is 
only a single angular component of I/J because of the syranetry of the 

problem. The equations 

arz to be solved for the boundary conditions representing the given 
values of the shear stresses 7 

face: 
7z and normal displacements uz at the sur- 

(3) 

(4) 

are the wave nu&ers corresponding to the speeds of propagation of longi- 
tudinal and transverse waves a and b (p is the density of the medium, and 

A and ~1 are the Lame constants). 

The solution of equations (1) and (2) by means of separation of vari- 

ables yields the following general representation of the bounded solutions: 

q~ = 7 C, (h) J, (hr) exp (- z VA” - ka2) dh (5) 
0 

$I = 7 C, (A) J, (hr) exp (- z VA” - kb2) dh 

0 

(6) 

where the branches of the roots are chosen to be positive for large 
values of X . 

The functions Cl(h) and C,(A) are determined from the boundary condi- 

tions. Substitution of (5) and (6) into (3) and (4) yields 

CO 

s 
J, (Ar) [2AvA2 - ka2 C, (A) + (kb2 - 2h2) C, (A)] dA = 0 (7) 

0 

cm 

s -- 
Jo (AT-) [- VA” - ka2C, (A) + AC2 (A)] dA = 

I 
“oi” I; ; :; $0 

0 

Taking into account the discontinuous Weber integral Ill 
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00 

s J,(Ar)J,(hc)dA = i If I’= “1 i- c 
0 

we see that in order to satisfy equalities (7) and (8) it is sufficient 
to let 

2k v-k” + k7aC, + (W- 2k7 c, = 0; - l/A” - k,T, f hC, = (UC /do) J, (AC) 

Then 

C, = $-e J, (AC), c, = : 2Aa- kb2 
IW kb2 p/A” -k,* 

J, (AC) 

Thus the solution is given by the following formulas 

00 

‘p==E s 2Aa -- kb* 

kb2 vr/hT 
J, (AC) Jo (Ar) exp (- z l/A” - ka2) dA (9) 

0 

+g~ g J, (AC) J, (Ar) exp (- z FA2 - k>) dh 

0 

(IO) 

In the acoustic case (k 

4 

+ m) formula (9) g’ ives a new representation 
of the Rayleigh integral [ ] for the displacement potential 

p = grexp (- z VA” - k2) J, (AC) J, (Ar) vl& iv 

=--2x0 ss c; dS (11) 

0 s 

where R is the distance from a point in the field (r, 8, z) to an element 

of the piston with coordinates (p, 4 ) 

R = v/z2 -j- ra + p2 - 2rp cos (‘p - 0) 

and the integration is performed over the surface of the piston S. 

G the other hand, because of formula (ll), one can express the solu- 

tion (9), (10) in terms of the integral 

as follows: 

(12) 

(13) 

. 2k,2 - kb2 
0 = s kb2 1 (ka) + $k$a;I (44 
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Without dwelling on the study of the wave propagation field, whose 

potentials are given by the formulas (of, (10) or (121, (131, we shall 

proceed to the more complicated problem of determining the active and re- 
active resistance of the connection of the piston with the field of pro- 

pagation. ‘Ihe total mechanical impedance of the piston 2: relates the 

reaction force F of the elastic medium due to the piston to its velocity v 

F exp (iot) = Zv exp (iot) 

where the force acting on the piston is equal to the integral over the 
surface of the piston 5’ of the normal stress uzz in the medilmn of the 
surface taken with a reversed sign: 

p=- !i\ ~zz \r+o d.3 
s 

Since 

(Jzz =P[2& 2 w _--- 2 a=9 2 acp 
.r a2 W ----k,%] (i”=+) r ar 

and when the values of the potentials (91, (10) and z = 0 are substituted 

here we obtain 

where 

o,, Iz+o = - iopvc 
s 

J, (kc) J,, (hr) CD (h) dA 

0 

(15) 

F&HII this it can be seen that for X + L 

k,z - ka2 
@(q---2. ks h 

b 

which means that the integral (15) is not convergent in the usual sense. 
The absence of convergence means that the analytical expression for uzL 

used is not valid at z = 0, which is quite natural with the discontinuous 
boundary conditions (4) for uz. 

We have to determine the limiting value of uEz as z -, 0. Consequently, 

equation (15) mak es no sense if it is to be understood in terms of con- 

vergent integrals. Yet, expression (15) will acquire a completely deter- 
mined sense if one agrees to study the integration symbol as a limiting 
value of the convergent integral 

00 a, 

s 
J, (kc) Jo (Xr) @ (h) dh = lim 

s 
e-*h J, (kc) J, (hr) U) (h) dh, 

0 6-0 D 



614 D.N. Chctaeu 

of course, if such a limiting value exists. Such a way of using divergent 

integrals in computations, originating with ELler and Poisson, is known 

by the name of the Abel method of station of divergent integrals [ 31 . 

-IhIS, when using the symbol of the divergent integral we will have in 

mind operations with a convergent integral up to the limiting operation. 

When (15) is substituted into (14) we obtain 

43 co3 

Z=iqx _ sss J1 (AC) Jo (AT-) @ (A) dA dS = 2niopc ss J, (AC) Jo (hr.) Q (A) dA rdr 
so 00 

Interchanging the order of integration we will integrate with respect 

to r: 

When 

e 

s 
Jo(b) rdr = + J, (AC) 

0 

2 = 2vriopc2 r J12 (AC) @ (A) q- 

0 

the function (16) is represented in the form 

@ (A) = & [(2&a - kb2)2 (A2 - ka2)--‘/, + 4 (2ka2 - kb2) (A2 - k,2)‘/* - 

- 4*2 (A” - kb2)‘1, + 4 (A” - ka2)‘1, - 4 (A2 - kb2)‘/*] 

and the notation 

A,(k) = i J12 (AC) (A2 - k2)n-‘+ (17) 
0 

is introduced, where the integral sign is to be understood in the sense 

of the Abel sunmation, then we shall obtain 

Z= 2fciwpc2 (2ha2k-kb2)" A, (A,) + 

b 

4 (2kf4- kb") A, (k,) _ 

b 

- +- AI (kb) -t & ~42 (‘h) - +A2 @b)] 
b 

(18) 

Now we shall evaluate the integrals (17). First of all let us perform 

a change of variable 

hc = u (kc = v) (1% 
then 

al 

An(k) = -&[ J,2 (u) ($ - 7,12)7+-‘/t !I$ 

0 

Furthermore, using the Neumann integral, 
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one can write CQ 'ItZ 

MW-& \\ 

d0 du 
Jz (224 sin 6) (u” - v2)+-‘J* - 24 

00 

With the aid of the recurrence formula 

J, (2~ sin 0) = 9 [J, (2 u sin 0) -j- Js (2~ sin e)] 

written in terms of Bessel integrals 

‘it x 
J,(2asin8) = e \ (sin cp -+ sin 39) sin (228 sin e sin cp) dg, 

we obtain 0 

(20) . . 
03 ‘IP n ‘Ii 77 

Antk~=~~~ j \ sin ‘p cos? ‘p sin e sin (224 sin 9 sin e) (us - ~~)~-‘~~dcjs de du 
0 0 0 

Now we shall interchange the order of integration and the internal 
integral with respect to the variable and sum according to Abel. ‘Ihen 
the integral becomes 

CO 

_ B,, = 
I 

sin (2~ sin 9 sin 6) (u2 - v2)‘+-“~du = (5 = 221 sin ‘p sin e) 
0 

1 00 

= - i (_ l)n$n 

s 
sin (xt) (1 - t&)+-l’* dt -i_ ZP 

5 
sin (zt) (t" - l)n-'/z dt (21) 

0 I 

The integral with finite limits is an ordinary integral. ft determines 
the Struve function with the index n 

1 

\ 
sin (zt) (1 - t2)n-‘ltdt = -- 

b 
(22) 

The second integral is computed using the Schlafli representation 

co 

s e-zf (t2 _ 1 )n-‘It dt = 
r b t-d) (z=&iis,6>O,n>-;$) 

0 
f ($) (g+@) 

When the limit 

co 

lim e+l (P - l)n-‘/~dt = lim 
s 

r (ni+-) 

6+0 1 z-j.-_ix r ($) ($..)” li’, (” = 
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exists then we obtain 

00 CO 

s 
sin (zt) (t2 - l)n-‘~~ dt ~1 liul 

s 
e--6f sin (st) (5” - l)+*~* dt =: 

1 8-M 1 

co 

E lim Im s e--It (tz - I)“-‘/2 dt = 
r(n+f)r($) ~ (- i>nJ, (5) (23) 

S-+0 1 2 (3” 
From this it follows that the generalized Mehler-Sonine formula [ 11 

is correct in the sense of the Abel sumnation not only for the values 

- l/2 < Y < l/2 but also for all negative values of V. 

when formulas (22) and (23) are combined we obtain the following ex- 
pression for the integral (21): 

B 

73 

I=: (-- llnr (n +$) r (f) P 
asin 0 2(-y-> 7t fJ71 (a sin 0) - 31, (cc sin @)I (CC = 2v sin ‘9) 

‘The remaining integrals in expression (20) have the usual meaning. 
Men (19) is taken into account this expression becomes: 

The integration with respect to 0 will be accomplished by expanding 

the Bessel and Struve functions into power series: 
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Then 
M r (‘) mni 

Cn(‘9)== 22 exp - 7 am 

m=o 2 $!y +l)r(-!f+ni-1) T ( > 

Now one can compute the last integral with respect of 4s: 

D, (k) = “r sin (p cos2 pC, (9) &+I = 

which can be written in the following way: 

D,,(k) = $. 

It can easily be seen that 

= 2v2 

n 

_-l D 
n-1 

From this, assuming that Dn is a function which is complete and bounded 
at zero, one obtains a recurrence formula 

D, = -$ { ZP-~ D,_l dv (26) 
0 

For n = 0 the series (25) becomes 
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lhe recurrence formula yields 

Q(k)= -2i[*_+_2pf-’ 2v 
-d,.J-\ !!!$i &] = 

0 0 

=-- 1; [l- 3 (Zv) - Jl(2V) 
u 

_+ p (2v) - Hl(24 

1) 3 
(28) 

where 

are tabulated functions. Similarly 

o,(+-g{l-&j [.7(2+J1(2u)]vd~-+~~]~(2+HH,(229]udu}= 

0 0 

’ = -- g 2 (24 - Jl (274 + Jo W) --- 
2v 4V’ 

3 (24 + 
W 3 

+3i[ 
H(2u)-HI(2v) ---l/a , Ho(2v) ii (2v) -_--- 

2v 479 89 

Now expression (24) becomes: 

ii (2kc) - HI (2kc) - ’ / IL 
2kc 

Substitution of these functions into formula (18) yields the following 

final formulas for the resistance of the driving of the piston 

2 = Spa [R (kaC; kbC) -f ix (k~c, kbC)l 

where S = RC* is the area of the piston, p is the density of the medium, 
a is the speed of propagation of the lingitudinal waves, c is the radius 
of the piston, and ka and k, are the wave numbers corresponding to speeds 

of propagation of longitudinal and transverse waves. Tbe dimensionless 
active resistance R and the reactive resistance X of the connection of 
the piston with the wave propagation field is expressed in terms of 

tabulated functions in the following fashion: 
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In the case of a .fluid (b = O), formulas (29) and (30) become the 
well-known Rayleigh formulas. 

‘lhe above dependence of the mechanical impedance of a piston with a 

rigid collar upon the parameters p, h and p can be utilized, for instance, 
for the determination of the physical properties of elastic bodies fin 
particular rock strata), just as the analysis of the impedance of a 
piston acting upon a fluid flow f 4,s ] can be used for the measurement of 

the flow velocity. 

Formulas (29) and (30) are easily studied in the limiting cases. For 
wavelengths that are small compared to the dimensions of the driver one 

has kac >> 1 and k,c >> 1. In this case the reactive resistance is small 

and the dimensionless active resistance approaches unity, so that 

which means that the character of the driving is the same as in the case 
of a high-frequency driving of a fluid of uniform density moving at the 
speed of sound, equal to the speed of propagation of longitudinal waves. 

At low frequencies, when kac << 1 and k,c << 1 we obtain 

To avoid misunderstanding let us note that in the last formulas the 
transition to the case of a fluid (kb + ~0) is impossible since they were 
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obtained under the condition that k,c << 1, i.e. for media in which the 

speed of propagation of transverse waves was comparable to the speed of 
longitudinal waves. 

TABLE 1. 

t R (kc) T X(kc) 

koc 
0.25 

z-z 
1:OO 

1.25 
1.50 
1.75 
2.00 

2.25 
2.50 
2.75 
3.00 

3.25 
3.50 
3.75 
4.00 

Elastic 
Poisson 

medium 

0.0376 
0.1461 
0.2960 
0.4560 

~%z 
0: 7639 
0.7956 

0.8101 

!*%!? 
o:s506 

0.3661 
0.6622 

::K% 

Ideal 
fluid 

0.0309 
0.1199 
0.2561 
0.4233 

0.6023 
0.7740 
0.9215 
1.0330 

f .1027 
3.1310 
1.1242 
4.0922 

1.0473 
1.0013 
0.9639 
0.9413 

‘lhe analysis using formulas (29) 

even in those cases when it becomes 

the accuracy of the existing tables 

As an illustration we present in Table 1 a computation of the values 

of the dimensionless active and reactive resistance using the fomulas 
(291 and (30) for the case of driving of a Poisson medium (X = ~1. For 

comparison also the corresponding values for the case of the fluid [ 61 
are presented. The argument is kc, wherein the wave number corresponds 

to the value of the speed of longitudinal waves. 

Elastic 

Poisson 

medium 

0.2063 
0.3772 
0.4891 
0.5345 

EE 
014164 
0.3675 

KE 
0:2993 
0.2675 

0.2724 
0.2543 
0:2365 
0.2226 

Ideal 

fluid 

0.2067 
0.3969 
0.5471 
0.6468 

0.6905 
0.6bOl 
0.6236 
0.5349 

0.4293 
0.3231 

;:%Z 

0.1159 

:%~~ 
0:122cI 

and (301 is also sufficiently simple 

necessary to enlarge the extent or 

of integrals 
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